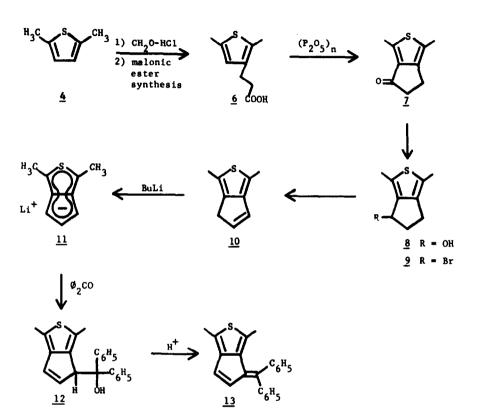

THE 2-THIAPENTALENYL ANION

Thomas S. Cantrell and Boyd L. Harrison Department of Chemistry, Rice University Houston, Texas 77001

(Received in U.S.A. 12 July 1967)

Anionic nonbenzenoid aromatic species are of considerable interest with respect to their stability and chemistry.¹ Little is known, however, concerning sulfur- or oxygen-containing cyclic anions with $(4n + 2) \pi$ electrons, such as 1 and 2.²


We report here the synthesis and properties of a derivative of 3a, the bicyclic analog of 2a; namely, the 1,3-dimethyl-2-thiapentalenyl anion (11).

Olefin <u>10</u>, the precursor of <u>11</u>, was prepared by the route shown in Chart I. Chloromethylation of 2,5-dimethylthiophene (4) with formalin and concentrated HCl at -10° gave 55% of 3-chloromethyl-2,5-dimethylthiophene (5); this represents a considerable improvement over the

previously reported yield³ of the monochloromethylation product. Compound 5 was converted via a standard malonic ester synthesis to 2,5-dimethylthiophene3-propionic acid (6), m.p. 60-61° (lit.⁴ m.p. 60°) in 36% overall yield.

Brief warming of <u>6</u> with polyphosphoric acid effected cyclization to the ketone $\underline{7}^5$ (b.p. 110-114° / 0.2 mm, V_{max} 1695 cm⁻¹) in 80-90% yield. This ketone was quantitatively reduced to the alcohol <u>8</u>⁵ (m.p. 71-72°; $V_{max} \sim 3320$ cm⁻¹) by addition of sodium borohydride in methanol to a methanolic solution of <u>7</u>. Replacement of the hydroxyl group of <u>8</u> with bromine was effected by phosphorous tribromide in ether at 0°. The bromide (<u>9</u>; n.m.r.: multiplet for

-CH-Br at Υ 4.92) was an unstable oil which rapidly decomposed in the pure state; consequently 9 was usually not distilled but was directly dehydrohalogenated to 10. Addition of an ethereal solution of crude 9 to potassium <u>t</u>-butoxide in <u>t</u>-butanol at room temperature gave the olefin 10⁵ (b.p. 65° / 0.2 mm; 65% from 8). Compound 10 showed V_{max} 1660 cm⁻¹ and n.m.r. signals at Υ 2.66 (multiplet, 2H, vinyl hydrogens), 7.17 (doublet, J \sim 1 cps, 2H, methylene H's), and 7.84 and 7.78 (singlets, 3H each, methyls). The ultraviolet spectrum showed a maximum at

241 m 🕰 (🗲 = 8200).

Treatment of <u>10</u> in tetrahydrofuran with excess butyllithium in hexane at -20° gave the lithium salt of <u>11</u> as a cream-colored precipitate which dissolved on warming the solution to room temperature. Solutions of <u>11</u> in THF displayed n.m.r. signals at τ 3.52 (1H, triplet, J~3 cps, H on C-5), 5.25 (2H, doublet, J~3, H's on C-4 and C-6), and 7.80 (6H, singlet, methyls). The ultraviolet spectrum of <u>11</u> displayed a shoulder at ~ 315-320 mpc ($\mathcal{E} \sim 2000$) and λ_{max} 256 mpc ($\mathcal{E} \sim 30,000$). Addition of water to solutions of <u>11</u> regenerated the olefin <u>10</u>; use of D₂O gave a monodeuterated olefin, whose methylene and vinyl hydrogen n.m.r. signal intensities indicated that the compound contained <u>ca</u>. 0.95 atom of deuterium.

The simplicity of the n.m.r. spectrum of $\underline{11}$ indicates that it is indeed the symmetrical anion shown, rather than a covalent lithium compound. The high field position of the hydrogens on C-4 and C-6 shows that a high charge density exists at these positions and that structure $\underline{11a}$

makes the chief contribution to the total resonance structure. The charge density at C-1 and C-3 is uncertain; the methyl hydrogen signals in the n.m.r. spectrum of <u>11</u> appear at essentially the same field as the methyls of the olefin <u>10</u>. However, the absence of an appreciable upfield shift for the methyls in the anion does necessarily rule out an appreciable contribution of structure <u>11b</u>. An upfield shift of the methyls due to increased electron density at C-1 and C-3 could be counterbalanced by a downfield shift caused by a large ring current. A case in point is cyclooctatetraene dianion, whose protons exhibit the same chemical shift as those of the parent olefin.⁶ The charge densities in <u>11</u> calculated by the HMO method will be reported in the full paper.

Treatment of solutions of <u>11</u> with benzophenone in tetrahydrofuran gave <u>ca</u>. 30% of the carbinol <u>12</u>⁵ (m.p. 157-158°; $\lambda \underset{max}{\text{CC1}_4} 3592$ and 1597 cm⁻¹; n.m.r. signals at 7 2.4 and 2.7 [10H, multiplets, phenyls], 3.44 and 3.90 [AB portion of ABX, $J_{AB} = 6$, $J_{AX} = J_{BX} \sim 2$, vinyl hydrogens], 5.38 [OH], 7.70 and 8.72 [3H each, singlets, methyls]). Toluenesulfonic acid-catalyzed dehydration of <u>12</u> gave the fulvene <u>13</u>⁵ as yellow needles, m.p. 100-101° (71%; $\lambda \underset{max}{\text{EtOH}} 370$ and 244 m_{AA}; $\xi = 9600$ and 26,000).

Further studies of the properties of <u>11</u> and of its oxygen analog <u>3b</u> are in progress and will be described in a forthcoming publication.

REFERENCES

- 1. For a review and leading references, see D. Lloyd, "Carbocyclic Nonbenzenoid Aromatic Compounds," Elsevier, New York, 1966, Chapters IV and VII.
- a) D.C. Dittmer and M.E. Christy, J. <u>Am. Chem. Soc.</u>, <u>84</u>, 399 (1962); b) The 4-azapentalenyl anion has recently been prepared; W. Okamura and T.J. Katz, <u>Tetrahedron</u>, <u>23</u>, 2941 (1967).
- 3. E. Brown and J. Blanchette, J. Am. Chem. Soc., 72, 3414 (1950).
- 4. Ng. Ph. Bug-Hoi and N. Hoan, Rec. Tray. Chim., 68, 32 (1949).
- 5. Compounds so designated gave satisfactory elemental analyses.
- 6. T.J. Katz, J. Am. Chem. Soc., 82, 3784 (1960).